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PROGRAM DESIGN OF A DIFFERENTIAL GAME WITH INTEGRAL PAYOFF"

A.N. KRASQVSKII and V.E. TRET'IAKOV

The functional form of the method of auxiliary program constructions is justified for
a position differential game with an integral payoff depending explicitly on the real-
izations of the object's motion and of the controls. The paper is closely related to /1—4/.

1. We consider the problem of position controls ¥ and v which minimize-maximize a pre-
scribed functional
o
V@ 118, 2t [ 10,0t []9) = (ot 2t ulth v(t) dt + ¢ (z[8)) (1.1)

tx
on the motions z (4 [.]19) = {a{¢], t,, < t < ¥} of the object

=i o ou ), <<t ue P, v (1.2)
17z, u, o) | <% + ] z]), %= const

and on the control realizations

ulte (1) ={ultl =P, t, <t LB, vt 1) = {oltl = Q, t, <t L9}
Here z& R™, ||z is the Euclidean norm of vector z,f, and ¥ are fixed, &, & [t,, %), P C R®, Q
R? are compacta, the functions f and ® are continuous in £ 2z, u, v and the functions f, o, @

satisfy a Lipschitz condition in Z in every bounded domain (. In addition, the condition (/1/,

p.97) .
min max {<s-f (¢, z, u, v)> + s,,,-0 (¢, 2, u, v)} =
usP reQ

max min {Gs-/ (6, 2w, 0> + spt-@ (4 2, U 9))
r=Q usP

is fulfilled. Here § is an n-dimensional vector, Sp,; is a scalar, <{s'f> is a scalar product.
The admissible control laws, i.e., the strategies u(-) and v{(-), are identified with the
functions )

v()={u(tz, )P, t, <t &R >0}

v(-)={v(t,z,8) =0Q, t, < t<® =R ¢>0}

({t, 2} is the position, € is some parameter). For a given initial position {t, z,}, for chosen
¢ >0 and partition A = {1;}, Ty = ty, Tm, =2, and for some ¢-measurable control realization
v (ty [-19) the chosen strategy u(-) generates a motion z (¢, [-1®) of object (1.2) by steps, as
an absolutely continuous solution of the equation

L =ft zlt], u(xy, z 1], e), v 2] (1.3)
zltd=1z,, 1, <<t <y, i=0,...,m

The motion &z (t, [-19) of objects (1.2), generated from the position {4, z,} by the strategy »(-),
is defined analogously as the absolutely continuous solution z [t} of the stepwise differential
equation

Sl =gl el v (T, 2 o e) (1.4

st =ur, vl i=0,..,m
We allow initial states z [, — r, from a domain Gl ={{ « || - (ro + 1) exply (¢, —to)] — L},
to < t, .9 where ry is a preselected number. When z, =G [t,] any motions z (¢, [-]*), *
9 of object (1.2) do not leave the domain G, = {{t. z}: x & G [}, t, < t < ¥} The following

statement is wvalid.
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Statement. The differential game being examined has a value p (. z) and a saddle point
{u° (-), ¥ ()} uniform with respect to the initial position {f. z} from domain Gg = {{{. 2} z =
G il £y <t B} )

This signifies that for any { >0 we can find £, ({) >0 and 8 (e, §) >0 such that for every
motion z°{t, 1-19), " lt,] = z, genexated by strategy w’ {-} in accord with scheme (1.3) the in~
equality

(@ (tg 119, 0° (6 L19), v (6 110)) <p (ty 24) + L (1.5)

is fulfilled for any initial position {{,.%,} < Gy which for every motion ' (£, [-18), % 1,] = 2,
generated by strategy ¢ (-) in accord with scheme (1.4) the inequality

v (2 (8, -19), u (0 (-19), 0 (1, L10)) T p (the 7)) — & (1.6)

is fulfilled if only the conditions
e < ey (B), max; [ty — 01 L8 ) .7

are fulfilled. In (1.5} and (1.6) w° (£ {-}8) anda ¢ (t, {-18) are realizations of strategies u® (')
and " (-), computed along the motions z° (£, [-18) generated by them. From (1.5) and (1.6) it
follows, in particular, that on the motions z°° (f, [1¥) generated simultaneously (possibly for
different A) by the strategies u°(-) and »° (-} and on the corresponding realizations u’ {f, [-1})
and 9° (£, [-19) the value of functional (1.1) differs arbitrarily little from the game's value
P {te» T4) if only conditions (1.7) are fulfilled. We omit the proof of this assertion. With
necessary changes it can be carried out by the scheme in /2,3/. The optimal strategies u® (-)
and »° (-} are constructed reasonably effectively from the known game value p{t, 2} by the
same plans as in /2/ {(p.426 of English translation).

2. The aim of the present paper is to justify an auxiliary program construction which
under certain assumptions permits the determination of the value of the differential game at
hand in the case when the obiject’s Eq. (1.2) has the form

= A ()z + f (¢t u, v) (2.1)
Here A (f} is a matrix-valued function, while the function @ in (1.1) has the form
o {t, T, u )= o, (1) + o, u s (2.2)

where the function v, is convex in 2. In addition, we now assume that the function ¢ in (1.1)
too is convex in  z. We consider the model

W=A@w+ftu, veP e (2.3)
Whiy, = Wyy (¢ ©, )
Denoting {w,, . .., W,, Wy} = 2 & B™!, we write Egs.(2.3) as
7 =A¢ )z 4 folt,u, 0, uaElP, v&¢Q (2.4)

where 4, (is an {4+ 1) X (n + 1) -matrix and fo {f, U, %) is the vector f{f #, ) augmented by
the (r + 1) st component of ., {4 4, ¥). On the motions of model (2.4) we consider the funct-

ional
@

Yo (2 (e [19) = { wolt, 2[11) dt + 0 (2 [8]) (2.5)

ie

corresponding to functional (1.1) with due regard to (2.2). Here ,(t, 2} = o, (f, W), @, {2) =
@ (W} + Wa,1, and both these functions are convex in z.

The essence of the result being discussed is as follows. For the initial game with func-
tional ¥ as given by (1.1) and (2.2) we can establish, using the model (2.4) with functional

Yo as given by (2.5), including the additional coordinate w,,, the possibility of applying

the method of auxiliary program constructions such that the value and the strategies u’ (-} and
#° (-} could be constructed on the basis of information only on the current position {t, z {#}.
When passing from the model to the object the additional coordinate Wy, is eliminated because
of the approach developed for position functionals /3/. Here the intermediate program constru-
ction is of a functional nature. We proceed with the description of its elements.

Any measurable function 2 (* [-19) = {v il = @, t* <7< ¥}, is called an action »(t* [-]9),
te < t* ¥ . We take certain »* & @, 1* ez (#*, 8] and we consider the set

F (%, v*) = T {fo (x*, u, ¥*), u = P} (2.6)

bounded, closed and convex in R™ . Let [®[i* §] be the space of measurable functions
{g (t*[-19)} with the nomm
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i
e 19 o= (§ 1¢tm "2‘“>%

Suppose that a certain action v* (t* [.]#) has been chosen. By the symbol § (v* (¢t* [-19)) we
denote the set {g(t* [-]9)} of elements from L& [¢* 8], satisfying the condition g ltl & F (x,
v* [7]) for almost all t & [¢*,8]. Any function from the set § (¢v* (¢t* [-]9)) is called an action
g* (t* l«]9) consistent with action v* {t*[-]9), We note that this set is nonempty, bounded,
convex strongly closed and weakly compact in space L® [i* &#]. The last two properties are
proved with the aid of Luzin's theorem /5/, p.291) and the theorem on the separation of sets
(/6/, p.452). For a given action o* (t* [-]9), to each fixed action g* (¢t* [-]®) consistent with
it when z[#*] = 7z* there corresponds a motion z(t* [-]¥) which is represented by the Cauchy

formula
f

dtl=X 2+ X (gt rdn, <O .7
'* o/
S Gt = (Jw | < (o + 26+ 1) exp [y (% — to)l—
1s I Wy, I < d (t* b to) + 280}
d=max { o,y v) | teLtLBusE P, veE Q)
Here X (¢, 7) is the fundamental matrix of solutions of the homogeneous equation corresponding

to Eq.(2.4) and ¢ >0 is some fixed number.
Let us considex the space L,®It,, %] of measurable functions {z(f,[-]19)} with the norm

@

2t 119 k= (§ D2tap2ar) "+ (2 101)

ty

(2.8)

where | z | is any chosen norm in space R™!. We fix a certain function z* (t, [-]t*) = {z* [#], t, <

t <{ t*}, satisfying a Lipschitz condition in ¢ and a certain action * (t*1-149). By WM
(2% (L, [-] £%), v* (t* |-]19)) we denote the set of all functions {2V (¢, [-1®)} from space L, It 4.
each of which is pasted together continuously from the chosen function z* (¢, |-]*)and some

motion z(t* [-]®) from (2.7), generated for action o* (t* [.]®) by any action g (¢* {-]9) consist-
ent with it when 2* = z* [{*]. Using the above-mentioned properties of set § (¢* (1* |-19)), it
can be shown that the set W® (z* (¢, {-]¥), v* (¢* [.]8))is convex and compact in L, @ [t ©].

By W® (B, M)we denote the set of functions {z® (t,[-19)} from L,® [¢t,, #), such that 7o (22
(te [-19)) <P and | 2® (¢, [-10) |, << M,where the functional ¥, is prescribed by expression (2.5),
B any preselected number, M is some sufficiently large fixed number. From what follows we
see that we can restrict ourselves to the cases when the set W® (§, W) is nonempty. From the
properties of the functions ®p and ¢y occurring in (2.5) it follows that set W® (B, M) is
bounded, closed and convex in L[® [t O]

We introduce the space L,? it,. #] of measurable functions with scalar product

L W
(l(t*l-lﬂ)-zu*[-lﬁ))=§ LItz [ty p(dl) ::S (L) 2 () dt 4+ <L 8]z [0
ix [
From the assumptions made and the properties ensuing from themof the sets W) = W® (2% (¢, [-1 %),

v* (t*[.19) and W® = W® (B, M) it follows that for values of P for which these sets do not
intersect, they can be separated (/6/, p.452), while the distance in space L,® [f,. 9] maximal
with respect to all possible actions o (t* [-]18) , between the sets Ww®  and the set W®  is
characterized by the quantity

o(z* (L, [[11*)B, M) = (2.9
max x (2% (t, () 1%), B, M, L, [-10)
e 1o <1
w(z* (L, [-1e%), B, M, 1(t,[-10) = (2.10)
max min (I (¢, [-19) - 20 (¢, [-19) — :
v(*[]9) gU*(-1®)
max (I (¢, [-10)-2® (¢, [-19))
2@ [ 19
positive and nonincreasing with respect to B. The quantity |[(f [-19) ,* is the norm adjoint

to norm (2.8), i.e.,
it

[Z(te1-}0)|s* = max {(S‘ 1] nzdr)l/’, |2[9] l*} (2.11)

te
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where |/ [*is the norm adjoint to the norm |z [chosen in (2.8). The definitions of gquantities
0 and % are well posed since all the extrema in (2.9) and (2.10) are, as a consequence of the
above-mentioned properties of sets §, W® and W® , actually reached on the corresponding
sets of arguments.

Substituting the expression for (¢, 1-]8) into (2.10), using the Cauchy formula (2.7)
for computing z(t* [-]9), then changing the order of integration and introducing the functional

bl
" (T,1(;*g.]m):Sl'u]X(z,Tm(dt), T B (2.12)

T

where the prime denotes transposition, we can prove that expression (2.10) takes the form

w(2* (0, 100, B L, (10N = (2.13)
Ut 1Mz, (T [ 11%)0) £ (L 1) - Xy, (0 [ 4] 0)g 2%)
i
K max min [ (1, { (t, [-19N) fo (T, v, 1)) dT —
% TEQ uEpP
max ([ (fy [-19)-20 (te [-1D)
(10

Here Y, (1, [-11%)g is a function coinciding with function Y (1, 1-11*) on the interval [t,, T*]C
lt,. 1 and vanishing at the remaining points of interval {f,, 9]. When proving the transition
from (2.10) to (2.13) it is important that the functions {y (1, { {ty -1 ), [ L-19) L*<T 1) be
uniformly bounded and equicontinuous on the interval |t*, 3] and if the sequence {/®) (¢, [-]19).
k=12, ...} converges weakly in L,®lt,, 9] to some function [* (t,l-19), then the correspond-
ing sequence {{ (1, /® (t, [-19). k=1, 2. ...} converges to function (. [* (t, [-18)) in RV uni-
formly with respect to T.

Under a certain additional condition a reversion to problem (2.9), (2.13) enables us to
find the value p (4, r.) of the differential game being analyzed. This additional regularity

condition is formulated as follows. Suppose that z* (t, [-]1¢*), p and M have been fixed and let
o (2* (te L-] %), B, 1) >0. Then for any &e>>0 there exists §(e) >0 such that for every ! : -
*) <{ 8 (e) and every action u* (t* [.]¢°) there exists an action g* (¢*1-11), consistent with

action u* (¢*[-1¢°), such that
£
YT, Pt [-]8) g* [tldr < \ max min [ (T, (e [ 1) fo (T, u, )] dt + ¢ (t° —1t%) (2.14)

* i* r&Q usP

e

~e

for each element [° (¢, [-19) being a solution of problem (2.9), (2.13), corresponding to the
chosen z* (tyl-1t*),p and M. The regularity condition is automatically fulfilled if the maxi-
mum in (2.9) is reached on a single element [° (¢, [-]19).

Let {t4, z4} Dbe some position, where i, <{t, <9, z, & G*[t,]. By the symbol p* (ty, 2%) we
denote the least upper bound of those numbers f for which o (z¥ (t, [-]t*), §, M) > 0,where z* [t,]= z,.
It turns out that 0% (ter 24) = D4 (Lys Zigr « - - » Bnx) T Znstss where py (ty, Zay -+« Zng) =0  (tar 214, - . -,

2,4 0). Let {t4, z,} be an arbitrary position from domain G, and let the regularity condition
be fulfilled; then the following assertion is valid: The value p (¢, r,) of the game being
examined is determined by the relation

O (tar Za) = P (Lyes Tigy « -+, Ty} = p* {(tas Tiges « -+ s Tng 0) (2.15)

The proof of this assertion is carried out by a scheme from the theory of auxiliary program
constructions. Here, however, we need to take into account accurately the supplementary cir-

cumstances connected with the functional nature of the elements l(t* 1.1 ). In this regard we
emphasize that although the elements of the proposed program construction allowing us to
compute the game's value, and, consequently, to construct the optimal strategies ©’ (-} and

v*(-), bear a functional nature, the optimal control algorithms derived from these elements
lead, in the final analysis, to the construction of forces as functions of a finite-dimens-
ional description of the current position {t. z,1t], ..., z,[t]} of the original object (2.1).
However, if the integrand in the functional (1.1) being optimized is such that o, (f, z) =0
in (2.2), the elements of the program construction being considered also are finite-dimens-
ional in character. In this case problem (2.9), (2.13) is transformed to the following problem
on the maximum of a function of the (n 4 1)st variable:

0 (£ 24, P, M) = max n (4, 24, B, M, 1) (2.16)

lit*<1
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o
Wit 2y B M D= 0N 020 = | max min (- X (8, ot 1 o) dr — max R (2.17)

‘,& TEY B 3(‘2)6:“'(2}(!5.:\1?

where |l [* is the norm adjoint to the chosen norm |z |, while W®{B, M) is the set of those
2= R for which g {z®) = ¢ (@) + Waur P and | 29 [ M. In concluding this section we
formulate an auxiliary statement which proves userul when solving concrete problems.

Let there be given fixed numbers B and ¢ >0 and a position set G° == { {f42.} 1y sl 4, ~J %
e TE GF {,]) Let a number M, >0 exist such that the set W® (. M,) and G, = {{fy, 2}
G {tx, 24 By My} <<¢} {167 is not empty, where o (f,. o, B, M,) is computed by formula (2.16) with
WO (B, M,). Then we can find a number M* ™ M, satisfying the condition: if ! is the maxi-
mizing vector for x (I, %4 P. M*. 1) when o {{,. c,. f. UW*) <Cc. then this vector ' remains maxi-
mizing also for x{fy. zy. B, M, ) with W® (B M)for all M - M*, and, in this connection,
O (g Sy By MY = 0 {4y, 24, B. M*).

3. Let us illustrate the method for solving problem (2.16), (2.17) by an example when
the Egs. (2.1) of motion are

d’q (o,
T o g ‘ig‘;{’ Fufsc 2 el (3.1}
and function (1.1) is .
R N N P P P (1.2)
i
We reduce system (3.1) to the normal form
=g, @ w8 E A, T w b h (3.3)
Then
o
ye=§ s det (2 (014 22 8D (3.4)
t
The model's Eqgs. (2.3} and the functional {2.5) have the form
W= wy wy b v, wy = wy, w = ha, w = (3.5)
T )
Yo (2 (8, [-10)) = wy [0] 4 (wy? 18] 4 w2 [O))'/+ (3.6)
Here it is convenient to choose the norm
atfr e
Lal=Jultlws = @2+ ob e e
for the vector :z={w,... w; ws}. Then

(L = max (2 - A ]
In accord with (2.16) and (2.17), if the regularity condition (2.14) is fulfilled, then for
determining the game's value p(t, #«) we obtain the problem

Gty 2o, B, M*) = max x (4, 2., B, M*, [
(ter 2, B, M%) = mox (4, 50, B ) (3.7

where the number M*is chosen in accordance with the conditions of the auxiliary statement,

2y = {4, - - -, Zaxs O} while the expression £or x(l,,z4, B, M*, ) (2.17) has the form

(3.8)
A (Eyy 2o By M*, 1) =TIy (31, + 22 (0 — ) +
b

Iy {Z2y + Zae (& = £,)) - fywge -+ Liwag] -+ g‘ mﬁgﬁl {uy 4 0){(O—1)+

gt w) (8 — 1)+ L (g +v) +

I (s 4 0,) + 15 Cu vy} dt— max 2.2
Dewkp, a%)

By the definition of set w® (8, M*),with due regard to (3.6) we have
WO (B, M) = D o Fw) e <P, [P <MY (3.9
From the form of % {,, z B, M*, Din (3.8) and w@(B, M*) in (3.9}, using the auxiliary statement.

we can deduce that 1°=1°=0, "= 1, and then we obtain

max By = max (IPwy A Loy + ws) = B
Daw g, M) (werw) T p (3.10)
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Ssubstituting (3.10) inte (3.8), introducing the two-dimensional vector sl = {,.(@ — 7,1, . @ — 1),
and allowing for (2.15), we find that
p(l,,z,)=sup(ﬁ:c(l,‘,z,,ﬁ,M‘)>0}= (3.11)
max  ((h (Zre + Zag (8 — 1)) + I3 (Toe + T00- (P — L))} +
(<1
3
{ max min[¢sie)-u> 4 <s{t]-0y 4 w03} d3)
3 it e
when the regularity condition is fulfilled. It can be verified that the integrand in (3.11)
equals A (Js[1] |), where
( —siell IsizlI<t (3.12)
AdsielD =i —3ps[uf+2, 1<Isil<2 .
-—\IS[T]II—2 fsiell=>2
=@ —1r r=02+ A"

Hence, the ratio l/l; does not for a nonvarying r influence the magnitude of the integral in
(3.11). But then we can set
L=r (1 + 230 (8 — )y Ly =1 (3y + 240 (B — L))/F (3.13)

STV

k== ({21 4 Taac (0 — 00))7 4 (Toe - zanr (T — 1))

when k=+0; but when ¥ =0 we have |°= 1 0 and with due regard to (3.13) problem (3.11) is

__________ - 1+
IEQU.(,EU to r.ne LOJ..LUWLH.Q PIOU.LEHI on the

"l
m
(_—y
=}
E

P (ter 2,) = max {rk +( unsmndd (3.14)
0<r<1 t

Computing in (3.14) the integral of the function A (s[t}) from (3.12) and denoting 7, =9 —y4,,
we finally find
tes = max ¥ (Ty, T4, 1)
P (te, Z4) KTQX( *r Ty (3.15)
(7R3 re10, T N(0,1]
Y (Tur Tgo7) =rk— | 3rT 22 5[(6r) — 2T res[TL 273 {0, 1]
rT 22 —19f(6r) + 2T, re 2T L 1) {01

J z /
T

095, 5% F s J

It remains to ascertain whether the regularity condition (2.14) holds. We can note that
the function % —t., #,,r)in (3.15) for ®<®, = 2is concave with respect to r for any position
{te, 24} Gy and, consequently, the maximum in (3.15) is reached for the single value . Hence,
the maximum over ! in the original problem (3.7), (3.8) with 0(ty. z¢. B, M*) >0 is reached on
a single vector . In such a case, as was noted, the regularity condition is fulfilled. It
can be shown that condition (2.14) holds also for #, <9 <% + " where 7 is some positive number,
in spite of the fact that the vector !® now will not be unique for all positions {t,, z.} & G
As ¢ increases further the regularity conditions is perhaps violated.

The optimal strategies «°(-) and °(-) are constructed in a known manner from the game's
value ¢ z) computed from condition (3.15) /2/. 1In typical situations the given game was
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simulated on a computer for the initial data ® =2, ¢, = 0, x,, = Zox = 3, Tga = Igy = 0. If both play-
ers are guided by the optimal strategies «° (-) and + (), then object (3.3) moves in the plane
{zi. 7} along a straight line passing through the origin, and the index y of (3.4} coincides with
the game's value p (¢, z,) = 1.578. Fig.l shows the motion of object (3.3) when w = «°(-) and
v = {cos ¢, sin i}, Here y= 1.025 <(p{ty, Z&)i Fig.2 shows the motion of cbject (3.3} when r = " (-}
and u = {2 cos nt, 2 sin s}, Here y = 2.655>> p (ty, 4).
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