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PROGRAM DESIGN OF A DIFFERENTIAL GAME WITH INTEGRAL PAYOFF* 

A.N. KRASOVSKII and V.E. TRET'IAKOV 

The functional form of the method of auxiliary program constructions is justifiedfor 
a position differential game with an integral payoff depending explicitlyonthe real- 

izationsoftheobject'smotionandofthe controls. The paperis closely relatedto /l-4/. 

1. We consider the problem of position controls IL and v which minimize-maximize a pre- 

scribed functional 
n 

Y~-Z~~*I~J~)~~~f*l~l~)~~~f*~~l~)~= So(t,z[tl,uItl,u[tl)dt + cp(sl61) (1.1) 
f* 

on the motions z(t* [.]I?)= {x[~tl,t*< t <O} of the object 

s' = f (t> 5. u, 2.), t, < t < 6, u E P, u E Q 

llf (t, 5, ZL, u) II < x (1 $ /) 5 II), x = const 

(1.2) 

and on the control realizations 

u (t* b.18) = {u [tl E p, t* < t s 61, v (t* 1.18) = {ZJ [tl E Q, t, < t < I?}. 

Here I E R", I/ z 11 is the Euclidean norm of vector .r,t, and 6 are fixed, t, E [t,, 6), p C BP, Q C 
Rq are compacta, the functions f and o are continuous in t.x, u, v and the functions f, o, 'p 
satisfy a Lipschitz condition in x in every bounded domain G. In addition, the condition (/l/, 

p.97) 
min max ((s.f (t, 5, u, v)> + sn+l.o (t, x, u, v)) = 
UEP EQ 

max min ((s.f (6 5, u, v)) + S,+I.W (t, 5, u, 71)) 
~EQ UEP 

is fulfilled. Here S is an n-dimensional vector, s,+~ is a scalar, (s.f> is a scalar product. 

The admissible control laws, i.e., the strategies u(.) and v(.) r are identified with the 

functions 
u(.)={~(trx,s)~P, t,<t,<~,x~R*, E>O} 

u (.I = (u (t, z, E) E Q, t, 4: t -< 6, .z E R”, E > 0) 

({t,r} is the position, e is some parameter). For a given initial position {t,,x,}, for chosen 

E>O and partition A = {TV), TV = t*,t,+l =,a, and for some t-measurable control realization 

v(t,[.]6) the chosen strategy u(.) generates a motion x(t,[*la) of object (1.2) by steps, as 

an absolutely continuous solution of the equation 

.Z' [tl = f (t, Z [tl, U (Ti, x ITi], E), v [tl) (1.3) 

I It*1 = I*, t, < t < Ti+,, i=O,...,m 

The motion x(t, [-I@) of objects (1.21, generated from the position (t*, x*) by the strategy v(.), 

is defined analogously as the absolutely continuous solution J It\ of the stepwise differential 

equation 

.i.' III = r (f. .I 111. I! Ill. {'(T,, 3J ITi]. F)) (1.4) 

.I' It*l = .J*. T, _ : f i,_,, L==O.. .,I, i 

We allow initial states .ril,l ~z S* from a domain G It,] = (11 J /( .: (r,, + I) exi, I;(. (t* ~- to)1 - 1). 

t, s t, s; 6. where r0 is a preselected number. When J* .ce G It,] any motions 5 (t* I.1 t*), 1* 
6 of object (1.2) do not leave the domain G, : ((f.s):.r EG Itl, t,d t _' I*). The following 

statement is valid. 
__-. 
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Statement. The differential game being examined has a value p (t.") and a saddle Point 
lU* (.), $ (.)} uniform with respect to the initial position {t.z} from domain G" = {(t. I}: z 6: 

G Itl, to < t < 6). 
This signifies that for any c>@ We Can find z*(g)>0 and 8(E, <)>Osuch*&atforevery 

motion 2*(t* [.I 6), x5 It,1 = .z.+ g enerated by strategy u'(e) in accord with scheme (1.3) the in- 

equality 
y (*" (t* [.llY), ue (t* I'l@), L'(t* 1.16)) < P (L r*) -I- 1; (1.5) 

is fulfilled for any initial position {t*. Sd) EGSB which for every motion .r’(f* I.l&),.r” If,1 = f* 

generated by strategy z?(.) in accord with scheme (1.4) the inequality 

V (2" (t* {.I@), u (t* f*lS), v” ft* i’k-t)) >, p (L. 5*) - 5 (1.6) 

is fulfilled if only the conditions 

E < E* (c), lllali It:+1 --il ;rz_( 6 (E, C) (1.7) 

are fulfilled. In (1.5) and (1.6) u"(t,(.lit) and FO (t,[*)@) are realizations of strategies u" (*) 

and no(.), computed along the motions x‘;(t* [.I+) generated by them. From (1.5) and (1.6) it 
fOllOW5, in particular, that on the motions zoO(t* [*IS] generated simultaneously (possibly for 
different Al by the strategies U' (s) and V' (.) and on the corresponding realizations iho ft* F-16) 
and u"(t,f*16) the value of functional (1.11 differs arbitrarily little from the game's value 
P(t*, &) if only conditions (1.7) are fulfilled. We omit the proof of this assertion. With 

necessary changes it can be carried out by the scheme in /2,3/. The optimal strategies UC(.) 
and v0 (+I are constructed reasonably effectively from the known game value p(t,x) by the 
same plan as in /2/ (p-426 of English translation). 

2. The aim of the present paper is to justify an auxiliary program construction which 
under certain assumptions permits the determination of the value of the differential game at 
hand in the case when the object's Eq.Cl.2) has the form 

x' = A (t)s + f (t, u, c) (2.1) 

Here A (1) is a matrix-valued function , while the function o in (1.11 has the form 

0) (L 2, u, V) = w, il. 5) i w,, (t. U, 2) (2.2) 

where the function tit, is convex in z. In addition, we now assume that the function (rin (1.1) 
too is convex in 2. We consider the model 

UJ' = A (t)w + f (t, U, a), u 6z P, v E Q (2.3) 
L&l+, = GV (t, u, v) 

Denoting {ml,..., w,, w,,+~} = z CZ R"+*, we write Eqs.12.3) as 

2' = A, (t)?; -t- fo (t, U, a)* U E P, a E Q (2.41 

where A0 (t)is an (n + 1) x (n + l)- 
the (n i- 1) st component of 

matrix and fo(t, % uf is the vector f(t,% V) augmented by 
@Ai, (t, u, v). On the motions of model (2.4) we consider the fun&- 

ional 

corresponding to functional (1.1) with due regard to (2.2). Here 
g(w)$. z%+l,and both these functions are convex in z. 

00 (I, 2) = 0, (G w)* (Pb (z) = 

The essence of the result being discussed is as follows. 
tionaly as given by (1.1) and (2.2) we can establish, 

For the initial game with func- 
using the model (2.4) with functional 

y0 as given by (2.51, including the additional coordinate w,+t, the possibility of applying 
the method of auxiliary program constructions such that the value and the strategies u"(.) and 
u'(e) could be constructed on the basis of information only on the current position {t,sltl}. 

When passing from the model to the object the additional coordinate w,,, is eliminated because 
of the approach developed for position functionals /3/. Here the intermediate program constru- 
ction is of a functional nature. We proceed with the description of its elements. 

Any measurable function u(1* [.I*) = {v[z] EQ,~* <T <,<6) 
t*<t* (6. 

, is called an action v(t* [.I*), 
We take certain v* E Q, %* &t*,it] and we consider the set 

F +*, V*) = co {jD (r*, u, z+), u E P} (2.61 

bounded, closed and convex in Rn+'. Let .W[t+,6] be the space of measurable 

(g(t* [*la)) 
functions 

with the norm 
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Suppose that a certain action v* (t* 1.16) has been chosen. By the symbol s (u* (t* ].]6)) we 
denote the set {g (t* [.I+)} of elements from L(Z,[t*,O], satisfying the condition g [TIE. F(T, 

2P IT]) for almost all T 6~ it*, 61. Any function from the set S (c* (t* ].] 6)) is called an action 
g* (t* r-16) consistent with action U* (t* ]-I 6). We note that this set is nonempty, bounded, 

convex strongly closed and weakly compact in space L(') [I*, 61. The last two properties are 
proved with the aid of Luzin's theorem /5/, p.291) and the theorem on the separation of sets 

(/6/, p.452). For a given action v* (t* ].I 6), to each fixed action g* (t* I.] 8) consistent with 
it when z[t*] = z* there corresponds a motion z (t* I.1 6) which is represented by the Cauchy 
formula 

z it]= x(t, t*) z* + s' x (t, r)g* [?I&, t*<t<ff 
t* (2.7) 

z* E G* [t*l = (11 w 11 ,< (r. + 2~’ + 1) exp Lx (t* - to)]- 

1, I w,+1 I < d (t* - to) 4- 2s0) 

d = max { I ~,,(t, u, v) I, t, Q f _( 6, u E p, u E Q) 

Here X(t,z) is the fundamental matrix of solutions of the homogeneous equation corresponding 

to Eq.(2.4) and e">O is some fixed number. 

Let us consider the space L*@)]I.+, S] of measurable functions (z(t* [.I@)} with the norm 

(2.8) 

where (z lis any chosen norm in space Pi'. We fix a certain function z* (t, 1.1 t*) = {z* [t], t*,< 

t,< t*), satisfying a Lipschitz condition in t and a certain action u* (t* L.16). By w(') 

(z* (t* I.1 1*), u* (t* I.1 6)) we denote the set of all functions (3') (t, I.1 6)) from space L,@' It,, 6). 

each of which is pasted together continuously from the chosen function z* (&I.1 t*)and some 

motion z(t* f.16) from (2.7) , generated for action L.* (t* 1.16) by any action g(t* [.]I?) consist- 

ent with it when z* = ;* It*]. U sing the above-mentioned properties of set S (L;* (I* I.]*)), it 

can be shown that the set IV(') (z* (t, I.1 t*), r* (t* I.1 6))is convex and compact in L*(Z) It,, 61. 

By WV)(fi, M)we denote the set of functions {#)(t*[.] 6)) from L,(') [t,,61,such that Vo (2") 
(t* (.ls)),< 0 and 1 5(2)(t*(.]~)12.<<M,where the functional yO is prescribed by expression (2.5), 
8 any preselected number,M is some sufficiently large fixed number. From what follows we 

see that we can restrict ourselves to the cases when the set @'(*)(j3.M) is nonempty. From the 

properties of the functions 610 and (rO occurring in (2.5) it follows that set Wr"(p, A?{) is 

bounded, closed and convex in L,(2) It,.6]. 
We introduce the space L,,t2J II,. 61 of measurable functions with scalar product 

B 

(l(t*I.]B).z(t*[.]B))=\’ (I[t].z[tj)p(dt) SF :I[t]~i[tl;dt~:-- clr~l.~m> 
i. f 

From the assumptions made and the properties ensuing fromthemofthesets WC" T w("(Z* (&[.I t*)! 

v* (t* 1.1 I?)) and W(2) = IV(') (p, M) it follows that for values of fi for which these sets do not 

intersect, they can be separated (/6/, p.452), while the distance in space .&(')]t*.fi] maximal 

with respect to all possible actions n(t* 1.16) , between the sets WO) and the set Wt2) is 

characterized by the quantity 

CT (z* (t* [.I 1*) @, M) = (2.9) 

,1(t,[,16),,*‘c1~ cz* (1, 1.1 t*). BT J$f, 1 tt* [‘I 6)) max 

x (z* (f* I.1 t*), p, M, 1 (t* [.I 6)) = 
max min (I (t, I.1 6) . z(l) (1, 1.16)) - 

U(f) [.IS) gtr*t-10, 
max (I (t* 1.16).~(~) (t* [.I 6)) 

zw* r.1 6) 

(2.10) 

positive and nonincreasing with respect to @. The quantity 1 l(t,[.)6) 12* is the norm adjoint 

to norm (2.81, i.e., 

I I& I-1 6) 12* = max {(j )I 1 [z] ~~Zdz)“*, I1 ISI I*} 
(2.11) 

* 
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where (1 ]*is the norm adjoint to the norm ] z Ichosen in (2.8). The definitions of quantities 

(I and x are well posed since all the extrema in (2.9) and (2.10) are, as a consequenceofthe 
above-mentioned properties of sets S. W(r) and W('j , actually reached on the corresponding 
sets of arguments. 

Substituting the expression for 5')(f,i.l6) into (2.10), using the Cauchy formula (2.7) 

for computing z(t* (.I*), then changing the order of integration and introducing the functional 

0 

l~(T.j(l*[.]lil))~~~‘[I]X(1,71U(dl), t*<T<* (2.12) 

where the prime denotes transposition, we can prove that expression (2.10) takes the form 

x(2*(1*(.]i*).P~.ll,I(f*[.lB))= (2.13) 

(1(1,[~]it).zf~(l:,[.]1*)~)-'(l(t*[.]~).XL,(1*[~,~*l~)O~*)f 

Here Y,,(T*[.] .r*)* is a function coinciding with function Y (T* I.1 r*) ontheinterval ]T*, T*]C 
It,. 6] and vanishing at the remaining points of interval It,. S]. When proving the transition 
from (2.10) to (2.13) it is important that the functions {$ (T, 1 (t* I']*)), 1 L ct* L.16) I,*< 1) be 
uniformly bounded and equicontinuous on the interval It*, 61 and if the sequence {I(') (L:, I'1 B). 
li = 1, 2. . .) converges weakly in L,r(')It*, Sl to some function I* (t*].] *),then the correspond- 
ing sequence ($ (r. /("I (t* I. 16)). I; := I. 2. .) converges to function 0 (T. I* (t* i.18)) in Rc"-') uni- 
formly with respect to rI. 

Under a certain additional condition a reversion to problem (2.9). (2.13) enables us to 
find the value p(t,, z*) of the differential game being analyzed. This additional regularity 
condition is formulated as follows. Suppose that z* (t+ [.I t*), p andM have been fixed and let 
0 (Z* (t* [. I t*), 13, .I/)> 0. Then for any E>O there exists s(e)> 0 such that for every t' : (1’ - 
f*) < 6 (E) and every action F* (t* I.1 to) there exists an action g* (t'" 1.1 tu), consistent with 
action z;* (t* [.I t”), such that 

Ii *r 

~~~(T,li(t*l’l~j)g*[T]dT <I ~~Qu~p max min [$(T, l’(t, 1.1 B)).!o (T, 11, u)] dr f E (to-t*) (2.14) 

for each element l"(t,[. 16) being a solution of problem (2.9), (2.13), corresponding to the 
chosen z* (t* 1.1 t*), 0 and M. The regularity condition is automatically fulfilled if the maxi- 
mum in (2.9) is reached on a single element l"(t, L.16). 

Let {t*, z*) be some position, where to < t, <es, z.+ E G* It 1. By the symbol P* (&I %) 
denote the least upper bound of those numbers fi for which c(zx (L I.1 t*), fl,M)>O,where 

we 
i* ]t*l= z*. 

It turns out that p* (t*, z*) = p* (t*, zl*, . , Z,*) -t Zn+1*1 where p* (t*, zr+, . . . , Z,*) =P*(& ZI*, . . . . 
z,,,,O). Let {t,,z,) be an arbitrary position from domain Go and let the regularity condition 

be fulfilled: then the following assertion is valid: The value p(t*, .r*) of the game being 
examined is determined by the relation 

PP*,s*)=fJ*(t*. x1*1,. .T”n*)=P*(t*,zl*,. . .,s,,,O) (2.15) 

The proof of this assertion is carried out by a scheme from the theory of auxiliary program 
constructions. Here, however, we need to take into account accurately the supplementary cir- 
cumstances connected with the functional nature of the elements 1 (t* L.16). In this regard we 
emphasize that although the elements of the proposed program construction allowing us to 
compute the game's value, and, consequently, to construct the optimal strategies IL' (.j and 
lJ (.)> bear a functional nature, the optimal control algorithms derived from these elements 

lead, in the final analysis, to the construction of forces as functions of a finite-dimens- 
ional description of the current position {t.s, It]. ., .q, 111) of the original object (2.1). 
However, if the integrand in the functional (1.1) being optimized is such that <*jr (t. Z) 3 0 
in (2.2), the elements of the program construction being considered also are finite-dimens- 
ional in character. In this case problem (2.9), (2.13) is transformedtothe followingproblem 
on the maximum of a function of the (n + lj st variable: 

(5 (t*. z*. p, 111) = nlax x (t*. 3*, p, ill, I) 
l/l*<1 

(2.16) 
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where / 1 j* is the norm adjoint to the chosen norm 1:. /. while ii@)(p, :W) is the set of those 
$1 ~z R"" for which 'pO (z@)) z q (wf $_ ?@,+I <p and IL;(‘) / *< M. In concluding this section we 
formulate an auxiliary statement which proves useful. when solving concrete problems. 

Let there be given fixed numbers @ and c >(J 

-.* ,z G* it,l). 
and a position set G" = ( (t,:,}. I,, .-_ 1, c ij. 

Let a number M,>.tj exist such that the set IV(') (15. .lf,) and (g, : f{i*. L-*} : 
0 ct*, L*, p, Me) <C} il G’ is not empty, where 0 (i:%. zf. 8, M,. is computed by formula (2.161 with 
rvc")(@. Jf,). Then we can find a number ZIP . M, satisfying the condition: if ii is the maxi- 
mizing vector for 1c (t*, i*, i',. M*. !j when 13 if,. E*. 1%. .lf*) <c. then this vector i' remains maxi- 
mizing also for x it,. of+. 8, M, I) with @'I*, (fl. .W) for all X M* , and, in this connection, 
0 ir,, r*. p, ,M) = fitI*, z*, p. !V*). 

3. Let us illustrate the method for solving problem (2.16), (2.17) by an example when 

(3.11 

(3.2) 

(3.3) 

(3.4) 

(3.51 

(3.6) 

In accord with (2.16) and (2.17), if the regularity condition (2.14) is fulfilled, then for 
determining the game's value p(fr,ztj we obtain the problem 

s V,, z*, 8. n/*j = maxx (t,. 2*, @, iti*. I) 
!ll"Cl (3.7) 

where the number Wis chosen in accordance with the conditions of the auxiliary statement, 
2t = k*. . . .,zatr 01, while the expression for x (I*, z*, 8, M*, 1) (2.17) has the form 

(3.&j 

By the definition of set W@)@, M*).with due regard to (3.6) we have 

W) (6, W) = {z@) : (tg -j- uQf”* -j- W$ Q fi, f E(2) j < M*l (3.9) 

From the form of x (f,, z*, 5, M*, I)in (3.8) and w")(8, M*j in (3.91, using the auxiliary statement, 
we can deduce that lSo= l*O= 0, Is”= t, and then we obtain 

max (P.P)) zz max (tt"W, + il%DZ 4 %j = B 
zi+aWW@, M') (~,~+W~++rc*rp (3.10) 
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Substituting (3.10) into (3.8), introducing the two-dimensional vector s]T] = (l,.(S-T),&.@-Q), 

and allowing for (2.15), we find that 

p (f,,Z,) = sup (B:0 @*. i*, B9 M’) >O) = (3.11) 

when the regularity condition is fulfilled. It can beverifiedthatthe integrand in (3.11) 

equals h (]!.Y [T] I]), where 

-us ITI IV> II s [Tl II < 1 
b (II s iTI II) = -31~[~]]]+2, l<lls[~11192 

-ll~~~lll-2’ Il~~~lll>,2 

II s ITI II = (8 - T) T. r _ (Z1” + z2q’z 

Hence, the ratio 1,/I, does not for a nonvarying r influence the 

(3.11). But then we can set 

(3.12) 

magnitude of the integral in 

h = r (~1, + %.(6 - t,))/k, 1, = r (G* + xa*,(6 - ft))/k 

k = I(G + ~a,.(6 - W+ (rz* + zr*.(6 - L))z]"' 

(3.13) 

when k#O; but when k=O we have 1,'= 1;"= 0. and with due regard to (3.13) problem (3.11) is 

reduced to the following problem on the maximum: 

(3.14) 

Computing in (3.14) the integral of the function h(]]s[~]I]) from (3.12) and denoting T,= fj_-*, 
we finally find 

P ct., z*) = max x (T,, z*. r) 
o<rs1 

( +T,3/3; 7 E 10, T;'] n [o, 11 

r(T,,z,, r) = rk- 3rT,$! + 5/(6r)- 2T,: r E ]r,',2T;1] r [O, 11 

rT,2/2- 19/(6r) +2T,; r E (ZT;',l] r [U. i) 

2.; I1 - 
1.6 

Fig.1 Fig.2 

(3.15) 

It remains to ascertain whether the regularity condition (2.14) holds. We can note that 
the function X(6- Lr*.r)in (3.15) for b<B,= 2is concave with respect to r for any position 

(f*, z,] E Go and, consequently, the maximum in (3.15) is reached for the single value r". Hence, 
the maximum over 1 in the original problem (3.7), (3.8) with ~(t,.:~, P. M*)>() is reached on 
a single vector P. In such a case, as was noted, the regularity condition is fulfilled. It 
can be shown that condition (2.14) holds also for 6,<6<6,-+-n. where n is somepositivenumber, 
in spite of the fact that the vector 1' now will not be unique for all positions (f*, z.)=& 
As 6 increases further the regularity conditions is perhaps violated. 

The optimal strategies u"(.) and u"(.) are constructed in a known manner from the game's 
value P(L I) computed from condition (3.15) /2/. In typical situations the given game was 
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simulated on a computer for the initial data 6= 2,t,= o,s,,= zz* -= 3,z3*==.c4. = TV If both play- 

ers are guided by the optimal strategies u"(.) and v"(.)~ then object (3.3) moves in the plane 
(+,.I~) along a straight line passing through the origin, and the index y of f3.4) coincides with 
the game's value p(tr.xC) = 1.578. Fig.1 shows the motion of object (3.3) when li -r-i,"(-) and 
0 = (cos nt, sin nt). Here y = 1.025 <p (t,, +): Fig.2 shows the motion of object 13.3) when j $< <./ 
and ~1 = (2 cos nt, 2 sin xl). Here 1' = 2.655 > p (t*, Q). 

REFERENCES 

1. SUBBOTIN A.I. and CHENTSOV A.G., Optimization of Security in Control Problems. Moscow,NAUKA, 
1981. 

2. KRASOVSKII A.N., KRASOVSKII N.N. and TRET'IAKOV V.E., Stochastic programmed design for a 
deterministic positional differential game. PMM Vo1.45, N0.4, 1981. 

3. KRASOVSKII A.N., Differential game for a position functional. Dokl. Akad. Nauk SSSR, Vol. 
253, No.6, 1980. 

4. TARLINSKII S-I., On a linear differential encounter game. Dokl. Akad. Nauk SSSR, Vo1.209, 
No.6, 1973. 

5. KOLMOGOROV A.N. and FOMIN S-V., Elements of the Theory of Functions and Functional Analysis. 
Bethesda, MD, Graylock Press, 1961. 

6. DUNFORD N. and SCHWARTZ J.T., Linear Operators. Pt. I: General Theory. New York, Inter- 
science Publ., 1958. 

Translated by N.H.C. 


